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Abstract

The topological sub-structural molecular design (TOPS-MODE) approach has been introduced for the study of mutagenic properties. The

mutagenicity of 16 dental monomers was studied with this approach, obtaining a good quantitative structure–toxicity model. For

comparison, four different weights were involved in the diagonal entries of the bond matrix for selecting the best TOPS-MODE model.

TOPS-MODE was used to derive the contribution of different fragments to the toxicity of studied compounds.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The activity of a chemical towards living organisms

depends upon the physical or chemical action on biological

tissues, and the nature of such action will depend ultimately

on the molecular structure of the chemical. This was

recognized over 100 years ago, and since then, but

especially in the last two decades, many attempts have

been made to relate the biological activity to molecular

structure in a quantitative or qualitative way [1]. On the

other hand, much effort is expended toward improving the

quality and durability of polymer-based dental restoratives.

These materials when prepared in situ may risk leaching of

chemicals and the polymerization could not be ideal.

Because substance such as monomers, initiators, and

polymerization sensitizers must be reactive, there is also

risk of interaction with genetic bio-molecules and therefore

the possibility for inducing mutagenicity [2]. Mutagenicity

is obviously a very important likely toxic effect and a

number of in vitro genotoxicity studies using micro-

organisms and cultured mammalian cell lines have been

designed to measure a number of different genetic target

points. Of these studies, those designed to measure the

induction gene mutations, chromosomal aberration and

genome alterations are of the utmost importance as they

provide an insight into the factors contributing to the

induction of human genetic disease. One of the most

commonly used of such assays is the bacterial assay known

as the Ames test [3].

The experimental determination of mutagenicity is

difficult and expensive, to simplify the laboratory process,

it would be suitable to use a model based on a dataset of

published results to predict mutagenicity, of previously

untested chemicals.

Thus, quantitative structure – activity relationships

(QSAR) have great potential to facilitate the design of

new dental resins that will posses favorable biocompat-

ibility profiles. The method is somewhat new in dental

materials research, but QSARs were found to be widely

applied to rational drug design and successfully used to

predict the structures of novel compounds [4].

In the context of in silico methods for modeling

toxicological and biological properties of chemicals, the
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topological sub-structural molecular design (TOPS-MODE)

approach has been introduced. The TOPS-MODE has been

applied to the description of toxicological and biological

properties of organic compounds [5–9]. The successful

application of this theoretical approach to the modeling of

toxicological and neurotoxicological properties [6,8] has

inspired us to perform an exhaustive study in order to test

and/or validate TOPS-MODE applicability in assessing

discoveries about the human mutagenic impact. We will

show here how TOPS-MODE is able to produce good

QSAR models that permit easy structural interpretation of

the results in terms of group contributions to mutagenicity.

2. Materials and methods

2.1. TOPS-MODE approach

TOPS-MODE is based on the computation of the spectral

moments of the bond matrix, whose mathematical basis was

described in previous reports by Estrada [10–12]. The

TOPS-MODE approach has been recently reviewed in the

literature [13], given a methodological explanation of how

to use it as well as a software description [14].

According to Estrada, the application of the TOPS-

MODE approach to the study of QSAR can be resumed in

the following set of steps:

1. To draw the hydrogen-depleted molecular graphs for

each molecule of the data set.

2. To use appropriated bond weights in order to differen-

tiate the molecular bonds, e.g. bond distance, bond

dipoles, bond polarizabilities, etc.

3. To compute the spectral moments of the bond matrix

with the appropriated weights for each molecule in the

data set, generating a table in which rows correspond to

the compounds and columns correspond to the spectral

moments of the bond matrix. Spectral moments are

defined as the trace of the different powers of the bond

matrix.

4. To find a QSAR by using any appropriated linear or non-

linear multivariate statistical technique, such as multi-

linear regression analysis (MRA), etc.:

P ¼ a0m0 þ a1m1 þ a2m2 þ a3m3 þ · · · þ akmk þ b ð1Þ

where P is the property measurement, mk is the kth

spectral moment, and aks are the coefficients obtained by

the MRA.

5. To test the predictive capability of the QSAR model by

using cross-validation techniques.

6. To compute the contributions of different groups of

interest in order to determine their quantitative contri-

bution to the activity of molecules under study.

The computation of fragment contributions to the

mutagenic property under study is probably the most

important advance of the TOPS-MODE approach to the

study of toxicological variables compared to the traditional

QSAR and QSPR methods. The procedure involves the

calculation of the spectral moment for all the fragments

contained in a given substructure, and by the difference

of these moments we obtain the contribution of the

substructure. The general algorithm for this computational

approach is as follows:

First, we select the substructure whose contribution to the

moments we would like to determine. Then, we generate all

the fragments, which are contained in the corresponding

substructure, and calculate the spectral moments for both,

the substructure and all their fragments. The contribution of

the substructure to the spectral moments is finally obtained

as the difference between the spectral moments of the

substructure and all those from their fragments. Once, the

contributions of the different structural fragments are

obtained, we only need to substitute these contributions

into the quantitative model developed to describe the

property studied.

2.2. Data set and computational strategies

In this study, we have selected a data set of 16 aromatic

epoxides for the mutagenicity data reported by Yourtee et al.

[15]. The mutagenic parameter studied here is the slopes of

revertants vs. nanomoles of test chemical in the Salmonella

test strain TA100 with the natural logarithm of the slopes

ðlnðTAs100ÞÞ used in the QSARs models. The names, smiles

notation and experimental mutagenic activity are listed in

Table 1.

TOPS-MODE computer software [16] was employed to

calculate molecular descriptors. The standard dipole

moments, hydrophobicity, molar refractivity and atomic

radius of van der Waals were used as bond weightings for

making differentiation of heteroatoms [11]. The selection of

only these types of descriptors from the whole pool of 10

types included in TOPS-MODE methodology was carried

out for the sake of simplicity and on the criteria that polarity

and hydrophobicity parameters influence the mutagenicity

of many compounds [2,15]. Therefore, four sets of spectral

moments were obtained, one for each used bond weightings.

A brief descriptions of these schemes used in the current

work are given in Table 2.

In general, 15 spectral moments were calculated for each

of the studied schemes, which make a total number of 60

descriptors. We also used multiplication of spectral

moments as independent variables for describing muta-

genicity on these monomers. In this case, we multiplied m0

and m1 for the first six spectral moments obtaining 12 new

variables. However, we develop the QSAR models with

each independent scheme and not with all the calculated

descriptors at a time. All statistical analysis and data

exploration was carry out using the Statistic 6.0 [18]. The

most significance parameters were identified from the

dataset using forward stepwise regression methods [19],
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where the independent variables are individually added or

deleted from the model at each step of the regression

depending on the Fisher ratio values selected to enter and to

remove until the ‘best’ model is obtained. In addition to the

models considering one specific family of descriptors,

mixed model with the entire pool of descriptors was seeked.

In this experiment, feature selection was carried out by

means of genetic algorithm. All the parameters such

as population size mutation probabilities, cross-over

probabilities, smoothing and so on were fixed at their

default values [29].

Examination of the regression coefficient, the standard

deviation, the significance and the number of variables in

the equation determined the quality of the model.

In addition, the regression models obtained were

validated by calculating q2 values. The q2 is obtained

from ‘leave-one-out’ (LOO) testing, also known as cross-

validation. A data point is removed from the set, and the

regression recalculated; the predicted value for that point is

then compared to its actual value. This is repeated until each

datum has been omitted once; the sum of squares of these

deletion residuals can then be used to calculate q2; an

equivalent statistic to R2: The q2 values can be considered as

a measure of the predictive power of a regression equation,

whereas R2 can always be increased artificially by adding

more parameters (descriptors), q2 decreases if a model is

overparameterized [19], and is therefore a more meaningful

summary statistic for QSAR models. Analysis of residuals

from the regression equations was used to identify outliers,

which were removed to aid analysis.

3. Results and discussion

3.1. Quantitative structure association constant relations

In this work, the model selection was subjected to the

principle of parsimony [22]. Then, we choose a function

with higher statistical signification but having very fewer

parameters as possible. Statistical parameters of the linear

regression models obtained by using TOPS-MODE to

describe mutagenicity are given in Table 3.

The order of spectral moments that are included in such

models varies from one model to another. It is due to the fact

that the structural information encoded by the different

weighting schemes used here is different and they have

different influences on the description of the variable

studied. As can be seen, these models are statistically

significant because of their p , 0:05: This confirms that all

variables conforming the models are significant and

essentially all of them could be used for predicting the

studied property of this set of compounds. Furthermore, all

models have the same number of significant variables and in

all of them the same training set was used which was formed

by 16 compounds as it is listed in Table 1. However, there

are remarkable differences related to the explanation of the

experimental variance and their ðR2Þ are also different. It can

Table 1

Experimental and predicted values of mutagenic toxicity in Ames test of aromatic epoxides

No. Compound Smile notation ln TA100

Exp. Cal.

1 4-Methoxyphenyl glycidyl ether COC1yCCyC(OCC2CO2)CyC1 0.115 0.377

2 4-Methylphenyl glycidyl ether CC1yCCyC(OCC2CO2)CyC1 0.860 0.996

3 4-t-Butylphenyl glycidyl ether CC(C1yCCyC(OCC2CO2)CyC1)(C)C 20.362 20.499

4 m,p-Dimethoxyphenyl propylene oxide COC1yCCyC(CC2CO2)CyC1OC 20.930 20.820

5 o-Methoxyphenylpropylene oxide COC1yCCyCCyC1CC2CO2 20.576 20.760

6 p-Benzylphenylpropylene oxide C1(CC2yCCyC(CC3yCCyCCyC3)CyC2)CO1 21.080 21.134

7 p-Biphenylpropylene oxide C1(C3yCCyCCyC3) ¼ CCyCCyC1CC2CO2 0.620 0.793

8 R-Glycidyl alcohol OC[C@@H]1CO1 20.514 0.039

9 Phenylpropylene oxide C1(CC2yCCyCCyC2)CO1 20.536 21.047

10 p-Hydroxy-m-methoxyphenyl propylene oxide COC1yCC(CC2CO2) ¼ CCyC1O 21.060 20.412

11 p-Methoxyphenylpropylene oxide COC1yCCyC(CC2CO2)CyC1 20.896 20.883

12 p-Methylphenylpropylene oxide CC1yCCyC(CC2CO2)CyC1 20.111 20.231

13 Phenoxypropylene oxide C1(COC2yCCyCCyC2)CO1 0.172 20.697

14 R-Naphthyl glycidyl ether [C@@H]3(CO3)COC2yC1CyCCyCC1yCCyC2 2.230 1.984

15 S-Glycidyl alcohol OC[C@H]1CO1 21.040 20.697

16 S-Naphthyl glycidyl ether [C@H]3(CO3)COC2yC1CyCCyCC1yCCyC2 2.100 1.984

Table 2

Definition of the different weighting bonds used in the current work

Weighting bonds Definitiona

Dipole Standard dipole moments

Hidrophobicity Bond parameters computed with the atomic

hydrophobicity

Molar refractivity Bond parameters computed with the molecular

refractivity

Radius of van der Waals Bond parameters computed with the atomic

radius

a Consulting Ref. [17] for more complete definition of bond parameters.
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be seen that models obtained using the weighting spectral

moments with molar refractivity explains more than 93% of

mutagenicity data variability. Thus, in our opinion, it is in

fact a determining factor at the time of selecting the best

model to be used later (Table 3), besides it presents a greater

F of Fischer ðF ¼ 54:94Þ and minor standard deviation of

data ðS ¼ 0:30Þ which confirms the former selection.

Predicted and observed values for all compounds in training

series are listed in Table 1. Fig. 1 shows immediately the

predicted values against the observed mutagenicity.

Since a cross-validation of LOO type was developed,

it was possible to confirm that the model obtained using

molar refractivity for the bond weightings had a greater

coefficient of correlation ðq2Þ and showed a minor

standard deviation ðScvÞ for this test (Table 3). In

addition, from the statistical point of view this model

is a robust one as can be seen from the statistical

parameters of the cross-validation.

Equation of the model obtained by this bond weight is as

follows:

ln TA100 ¼ 21:773ð^0:256Þ þ 0:073ð^0:007Þm1m
MR
1

2 0:003ð^0:0002Þm1m
MR
4

þ 0:0004ð^0:00001Þm1m
MR
5 ð2Þ

In this equation, m1m1 is the square of the sum of molar

refractivity in the molecule, the m1m4 and m1m5 are the

multiplication of the respective spectral moment in the

molecule according to selected case.

The structural significance of this model will be a steady

Table 3

Statistical parameters of the lineal regression models for mutagenicity obtained for the four kinds of descriptors and the mixed of these kinds

Weighting bonds Spectral moments N S R2 R2
adj F p q2 Scv

Hidrophobicity m2; m0 £ m6; m1 £ m4 16 0.66 0.680 0.661 8.504 0.00 0.51 0.90

Dipole m0 £ m2; m0 £ m3; m0 £ m4 16 0.45 0.852 0.835 23.056 0.00 0.79 0.81

Molar refractivity m1 £ m1; m1 £ m4; m1 £ m5 16 0.30 0.932 0.908 54.943 0.00 0.89 0.48

Radius of van der Waals m4; m0 £ m0; m0 £ m1 16 0.59 0.743 0.714 11.61 0.00 0.59 0.94

Mixed model m1 £ mMR
1 ; m1 £ mMR

4 ; m1 £ mMR
5 16 0.30 0.932 0.908 54.943 0.00 0.89 0.48

Fig. 1. The linear relation between observed and predicted mutagenicity in aromatic epoxides for Eq. (2).
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support later when we analyze the contribution of the

different structural fragments to mutagenic property.

Consideration of the outliers removed from a QSAR is

essential. An outlier to a QSAR is identified normally by

having a large standard residual [20] and can indicate the

limits of applicability of a QSAR models. There are several

reasons for their occurrence in QSAR studies, e.g. chemicals

might be acting by a mechanism different from that of the

majority of the data set. It is also likely that outliers might be

a result of random experimental error that might be

significant when analyzing large data sets. Although it is

acceptable to remove a small number of outliers from

QSAR [21] it is noted that it is not acceptable to remove the

outlier repeatedly from a QSAR analysis simply to improve

a correlation. In the current work, the compound 10 present

a large residual and should be consider as an outlier. At

removal of this compound from the training set the

following equation is obtained:

ln TA100 ¼ 21:652ð^0:210Þ þ 0:070ð^0:006Þm1m
MR
1

2 0:003ð^0:0002Þm1m
MR
4

þ 0:0004ð^0:00003Þm1m
MR
5 ð3Þ

N ¼ 15; R2 ¼ 0:951; S ¼ 0:256; p ¼ 0:000

Removal of the outlier improved the explanation of

experimental variance of Eq. (2) when compared to Eq. (3).

Nevertheless, the regression coefficient of the model

represented by Eq. (3) does not improve significantly

when this compound is removed from the model ðR2 ¼

0:951Þ: For this reason, here any compound was considered

as a potential outlier.

On the other hand, in all previous studies we only

considered models with a specified family of molecular

descriptors. Thence, in order to complete the demonstration

of the potentialities of TOPS-MODE over the remnant ones

mixed models considering all the molecular descriptors at

the same time must be developed (Table 3). The total

number of molecular descriptors considered here is higher

than 185. Thus, a strategy for feature selection is necessary.

In this sense, we performed a genetic algorithm previous to

forward stepwise regression analysis. Anyhow, in our

opinion the most interesting result is that the best model

found coincides with the one reported in Eq. (2). This result

has shown that the molar refractivity is a very important

factor determining the capability of induced mutagenicity

by aromatic epoxides.

3.2. Comparison with other approach

Certainly, there are several reports previously published:

a QSAR on mutagenic activity that involve dental mono-

mers, in special aromatic epoxides [15]. In this paper,

Yourtee et al. used the following equation in order to

describe the mutagenicity on the aromatic epoxides

ln TA100 ¼ 62:88 2 1:9041LUMO þ 330:00Qmin

2 0:083YZshad þ 497:20 �R1eC þ 36:08Rmin
1eC ð4Þ

N ¼ 16; R2 ¼ 0:9682; R2
CV ¼ 0:8954;

F ¼ 60:81

The descriptors for the aromatic set were the minimum

atomic partial charge, Qmin (related to the electrostatic of the

molecule); YZshad related to the two-dimensional shape of

the molecule; and the reactivity descriptors: the LUMO

energy, 1LUMO; and average and minimum one-electron

reactivity indices for a carbon atom, �R1eC and Rmin
1eC;

respectively.

Apparently, this model seems to be an excellent

correlation among the descriptors and the mutagenicity of

these dental monomers. However, exit several points that

should be discussed.

Comparing Eq. (4) with our better model represented in

Eq. (2) we note that this shows a better R2 (0.968 vs. 0.932).

Although, this difference is not marked from statistical point

of view, the model presented by Yourtee et al. showed five

variables in their equation with only three in our model. In

addition, also the ratio between the number of cases vs. the

number of adjustable parameters in the model, r ¼ ðno: of

data pointsÞ=ðno: of adjustable parametersÞ should be con-

sidered here. This statistical parameter should be r $ 4

[28]. The model reported in Eq. (4) presented r ¼ 2:67

meanwhile our model reported r ¼ 4: For that reason we

feel that the model is overfitting. Along these years, much

have been discussed about the problem of overfitting in the

QSAR models, a clear example published recently showed

that models that include unneeded predictors lead to worse

decisions. In drug discovery, for example, a mistaken

decision to add irrelevant predictors can make predictions

worse because the coefficients fitted to them add random

variation to the subsequent predictions [22]. In addition, this

experimental measurement possesses a high error and

therefore the models of mutagenicity where there are too

many fittings is where a statistical point of view run the risk

of an overfitting of the model. Therefore, it is not justified

considerably to increase the complex of the model with the

simple objective of increasing R2: On the other hand, should

be taking into account that the use of physicochemical

descriptors is subject to a number of statistical criteria such

that a minimum of five observations is required per variable

(descriptor) at the equation in QSAR models [23]. This

statistical criterion violated by Yourtee et al. (16 cases/five

variables) contribute without a doubt to model overfitting.

3.3. Study of group’s contribution to mutagenic property

In these years, individual QSARs have been developed

for mutagenic endpoint. This has typically been for
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individual class of compounds with the purpose guarantied

the same action mechanism. For instance, Debnath et al.

[24] describe that the prediction of the mutagenic to

Salmonella typhimurium TA100 of aromatic and hetero-

aromatic compounds prove that the hydrophobicity and

molecular orbital properties are of vital importance for the

modeling of this property. Confirming this, Tuppurainen

[25] has reviewed the use of molecular orbital calculations

and hydrophobicity in the prediction of mutagenicity and

found ELUMO to be useful for the prediction of the mutagenic

potency of hydroxyhydrofuranones. In contrast, Franke et al.

[26] demonstrated that on describing mutagenic potency in

amines within the active compounds no log P term appears

in these functions, so that hydrophobicity does not appear to

be a key factor in class separation. Furthermore, Garg et al.

[27] showed that in aminobenzene compounds can have

rather similar values of log P but quite different mutagenic

activities.

On the other hand, we find that for the case of the

aromatic epoxides the best correlation with the mutagenicity

is obtained when the molar refractivity is used as bond

weights. This shows an interesting behavior if taken into

account that the molar refractivity is the molecular volume

corrected with the refraction index of the molecule. Thence

may be concluding that the action mechanism of the

different families of compounds depends on their molecular

structure.

As we previously explained, the TOPS-MODE approach

is able to compute the contribution of any structural

fragment (real or hypothetical) to the biological property

or activity studied. In the present case, we can find the

positive and negative contributions of such fragments to the

development of the mutagenicity activity. These fragments

will be named here as active and inactive, respectively. The

presence of active fragments does not presuppose the

development of the mutagenicity activity per se, because it

is well known that the activity is the consequence of the sum

of contributions of all fragments in the molecule. In Table 4

and Fig. 2 we show the fragments and their contributions to

the mutagenicity calculated from Eq. (2).

The analysis of the fragments F16 and F17 point out to

the positive contribution of them to molecular mutagenic.

The mutagenic character of these cyclic esters (epoxides)

obeys to their vast reactivity so that the high torsion

spanning of the three-member ring leads steady to the

ring cleave. The internal bond angles of the ring around

608 are far away from the 109.58 expected for a

tetrahedral arrangement at carbon atom or to the divalent

oxygen bonded to the carbon atoms in acyclic ethers.

Since the atoms are not enough close in order to allow

the maximal overlapping of the orbitals, thence the bonds

are not so strong like current ether and it is more

reactive. The arrangement of the three atoms is normally

accepted to look like a banana shape bond. Essentially,

epoxides are electrophilic, reactive chemicals may form

DNA–protein cross-links and induce mutagenesis. How-

ever, these one chemical properties of the epoxides

convert them into potential precursor of dental resins.

When these monomers are photo-excited a polymeriz-

ation process takes place that leads to the building of

resins. This process is encouraged by the presence of

amino groups and hydroxyl groups bonding to aromatic

and aliphatic chains. In this sense if we compare the

moieties F1 and F8, we steady confirm that the former

increases positively the property, while the latter supply a

negative donation to the property. The mutagenic

property could be decreased by epoxides, monomers

where phenolic rests were involved.

On the other hand, an analysis on the results of this

research show that an increase in the carbon lineal chain

leads to an increase in the mutagenic activity.

This affirmation is based on the analysis of the set of

fragment from F3 to F5 where an increase in methyl group in

each fragment increase the contribution to the property from

0.508 to 1.486.

Nevertheless, when the branching of the fragments is

increased, the contribution to the mutagenic property is

minor as was observed in the fragments F6 and F7 where the

contribution diminishes from 0.967 to 20.114. This type of

contribution associate to the ramification or branching of the

carbon chain is in relation with the target point of each

dental monomer in special [2].

As have been observed there are sudden decreases in the

activity by ramification of the groups of the lineal aliphatic

chain, each one of these fragments (F5, F6, F7) having the

Table 4

The contribution of different fragments to the mutagenic activity of the

aromatic epoxides under study

Studied

fragments

Fragment

contribution

Studied

fragments

Fragment

contribution

F1 0.604 F10 20.840

F2 0.963 F11 20.186

F3 0.508 F12 20.997

F4 0.937 F13 23.212

F5 1.486 F14 20.946

F6 0.967 F15 0.376

F7 20.114 F16 0.458

F8 20.658 F17 0.503

F9 20.789

Fig. 2. Structures of selected fragments for which their contributions to the

mutagenic activity was calculated.
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same number of carbons (almost of the same hydrophobi-

city), but their contributions are extremely different, but if

we compare aliphatic groups with difference in ramification

and different number of methyl groups we would be able to

appreciate higher changes in their contributions. In this case,

an increase in the hydrophobicity leads to enlarge the

analyzed property.

4. Concluding remarks

Despite some criticisms, there is an increase in the

necessity of topological-indices-based QSAR models in

order to rationalize the drug discovery process. In this sense,

the TOPS-MODE approach has been extended not only to

the discovery of novel leads but also to the study of the

physicochemical, absorption properties and toxicology

properties of drugs. In the present paper, the TOPS-

MODE approach has been probed to generate good

predictive linear models in order to account for mutagenic

activity. Thence, we can assert that the TOPS-MODE

approach may be used as an efficient alternative to screening

of mutagenic activity of dental monomers.
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